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Figure 1 Dendritic arm spacing versus undercool ing at 
different  cooling rates for N i - 3 0 % C u  [3] and F e -  
25% Ni [4 ].  

that the dendrite arm spacing is proportional to 
the solidification time t p, where p is an empirical 
exponent. If  we assume that the solidification time 
is almost equivalent to the time during coarsening, 
te, the dendrite arm spacing should be proportional 
to [ 1 / 2 ( 7 " 1 - T s ) t d  p where T1 and Ts are the 
liquidus and solidus temperatures. Assuming that 
the time for recalescence is much smaller than the 
time for coarsening, the term 1/2(T1-  Ts)te rep- 
resents approximately the area of the cooling curve 
during the coarsening time and between the two 
isotherms. It was also observed that coarsening at 
high temperatures requires less time than at lower 
ones, therefore final dendrite arm spacing should 
be proportional to ( f  Tmdte) p where Tm is the 
temperature of the melt. 

Generally if both undercooling ~Tu and 
coarsening cooling rate J~e are to be included in a 
single formula we can use the equation 

d = C(ATu)-m(Tc) -n (6) 

in which C is also an empirical constant. If  we 
accept that the cooling rate is high and the under- 
cooling is low, we will have ATu ~ Tuln; there- 
fore Equation 6 becomes 

d = c(ru)  -m'2 (re)-". (7) 

Applying this equation to the systems Fe-25% Ni 
[4] and Ni-30% Cu [3], we can find from Figure 
1 that m is between �89 and ~. The same value of m 
was found for Ni-20% Cu [3]. 

In conclusion it is found that for powdered 
Fe-25%Ni conduction cooling is negligible, the 
dominant cooling being due to convection. For 
large ingots, however, the dendrite arm spacing 
is inversely proportional to the undercooling with 
a proportionality constant between {t and �89 
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A note on the residual stress about a 
pointed indentation impression in a britt le 
solid 

The residual stress about a permanent hardness 
impression in brittle solids is of considerable im- 
portance to practical and theoretical aspects of 
indentation fracture mechanics. Lawn and Swain 
[1], and Lawn et al. [2] have previously described 
the role of the stress field about a pointed indenter 
i n  the initiation and propagation of  so-called 
"median" or nmTnal cracks on loading, and 
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"radial" and "lateral" cracks on unloading. In 
particular, the residual stress provides the driving 
force for lateral cracking which is primarily re- 
sponsible for the observed t~igh two- and three- 
body abrasive wear rates of  brittle solids. Thus any 
complete theoretical fracture mechanics descrip- 
tion of these types of cracks must incorporate the 
residual stress. The residual stress is also important 
because of the increasing use of pointed indenters 
to notch brittle solids prior to bend strength 
determinations [3 -5 ] .  The residual stress about 
the permanent impression would be expected to 
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contribute to the magnitude of the crack tip stress 
intensity factor. 

Indentation of brittle materials with a Knoop 
or Vickers pyramid has been found by many 
authors [3-8]  to provide a convenient means of 
introducing a starting flaw for obtaining reproduc- 
ible fracture mechanics parameters of brittle solids 
in flexure. However, systematic studies by some of 
these authors [3, 4, 7] were able to show that the 
critical stress intensity factor in flexure, KBC 
determined using this approach was consistently 
lower than using alternative methods (e.g. double 
torsion, double cantilever). Moreover, it was found 
that when either the hardness impression was 
ground away [3] or annealed [3, 4, 7] that the 
new KBc value determined in bending with the 
notched bar and by alternative methods were in 
excellent agreement. The observation of the lower 
KBC prior to annealing indicates that there is some 
residual tensile force acting across the crack 
mouth. 

The above observations provide a means of 
determining the residual stress about the de- 
formed zone surrounding an indentation im- 
pression. From the principle of stress super- 
position, the stress intensity factor at the crack tip 
is just the summation of the stress intensity due to 
bending plus that due to the residual stress, that is 

KI = KBC q-KR = K~c (equilibrium). ( l )  

Following Petrovic et al. [3], the stress intensity 
factor in a notched beam in bending is 

KBC = o M ( ~ c / Q )  1/2 (2) 

where o is the outer fibre tensile stress, M is a 
numerical factor ~ l.O for small flaws, c is the 
flaw depth and Q is a factor relating to flaw geo- 
metry, and for the materials given here is given by 
Qr/2) ~ for near half-penny like (�89 surface cracks. 

The component of the stress intensity factor 
due to the residual stress is not quite as straight- 
forward but to a good approximation may be 
thought of as equivalent to a force P acting at the 
mid-point of the surface trace of  the flaw created 
during indentation. Lawn and Fuller [9] have 
recently indicated that the stress intensity factor 
at the tip of a penny-shaped ( lp)  crack during 

pointed indentation fracture is, 

2i% 
K~ - (~c)3/2 (3) 

where P• is tlae point force perpendicular to the 
crack mouth at the midpoint of the surface trace 
of  the crack. For a smooth conical indenter of half 
angle ~, P• is given by 

P 
P •  (4) 

2 tan 

The stress intensity factor due to the residual 
stress would then be 

2PR• 
K R - (7fC)3/2 ( 5 )  

where PR• is the residual force normal to the 
crack. 

A measure of the residual stress intensity factor 
may be obtained by knowing KBc before and after 
annealing the indented material. Then from 
Equation 1, one obtains 

KR = ( K s c ) f  - -  (KBc)i .  (6)  

on the assumption that K R --- 0 after annealing; the 
subscripts f and i indicate final and initial values of  
the stress intensity factor respectively. Values of 
KR are listed in Table I for a wide range of ma- 
terials. The ratio of the residual stress intensity 
factor KR to the critical stress intensity factor 
after annealing (KBc)f, which at equilibrium 
equals Klc ,  is from Equations 3 and 5* given by 

KR 2PR• (Trc) 3/2 PR• 

KlC - 0re) an " 2P• p• . (7) 

Values of the ratio KR]Kac are listed in Table I 
and for the materials considered the ratio appears 
to be a constant independent of the hardness of  
the material. The possible exception is the lithium 
aluminium silicate glass ceramic which was an- 
nealed under load [5]. This may have caused some 
blunting of the crack tip, explaining the slightly 
higher K R / K l c  value. The residual force PRJ_ may 
be obtained from Eqution 7 upon substituting for 
Pl  from Equation 4, that is 

*Strictly speaking, Equations 3 and 4 only apply for conical indenters, yet the data of Petrovic et aL [3] and 
Ingelstrom and Nordberg [7] for the depth of flaws as a function of load with a Knoop indenter, fits Equations 4 and 5 
surprisingly well. 
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T A B L E  I Values of  the hardness, critical stress intensity factor and residual stress intensity factor for a number  of 

materials 

Material Hardness (KBc)f (KBc)i KR KR/Klc 
(GPa) (after anneal) (before anneal) (MN m -3/2 ) MN m -3/2 ) 

(MN m -3/2 ) (MN m -3j2 ) 

Reference 

Lithium % 12-13  0.76 0.47 0.29 0.38 5 
aluminium 
silicate 

SiC , 3 0  3.8 2.57 1.23 0.32 4 

Si~ N4 ,x, 22 4.65 3.4 1.25 0.27 3 

WC(Co) 17.0 10.0 6.9 3.1 0.31 7 

WC(Co) - 11.0 8.5 2.5 0.23 7 

WC(Co) 15.5 12.3 8.6 3.7 0.30 7 

MeanKR/K1c = 0.30 

K~ P (s) 
PRI = K m  " 2 t a n  

The residual force may be converted into an 
equivalent stress if  we know the area over which it 
operates. Previously [1] it has been shown that it  
is convenient to represent the mean indentat ion 
pressure or hardness by 

Po = P / a ~ a  2 = H, (9) 

where a is a dimensionless constant determined by 
the indenter  geometry (for a Vickers pyramid a = 
2/rr with a the half  diagonal o f  indentation).  A 
similar expression for the residual stress aR may 

be writ ten i f  it is assumed that  in the case of  a 
Vickers pyramid impression the residual force acts 
through a semicircle o f  radius a (the half  diagonal 
o f  indentat ion)  then 

oft = PR• a 2. (10) 

This assumption is reasonable for materials with a 
high ratio o f  yield stress (or hardness) to Young's 

modulus (Y/E > 1/20). Now combining Equations 
8, 9 and 10 we have 

KR H 
OR -- (11) 

K~c tan 

A similar expression may be obtained for a Knoop 
indenter  i f  a in Equation 10 is taken as half  the 
mean of  the two diagonals. For  a Knoop indenter  
tan ~0 "" 2 and the mean value of  KI~/Klc ~-- 0.3 
giving a value o f o  R ~--H/20. 

It is not  clear at this stage just why the ratio o f  

KR/Klc appears to be a constant independent o f  
material. More recent work [ 10] indicates that  the 

ratio of  KIt/KIt  is almost independent o f  load 
until high indenter  loads are reached at which 
point  the residual stress intensity factor approaches 
zero. This may be due to extensive crushing under 
the indenter  or relief of  the residual stress by 
lateral cracking. 
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Transition from slow to fast crack propa- 
gation in PMMA 

It is a well-known feature of  the fracture behav- 
iour of  PMMA that at the critical value of  stress 
intensity factor, KIr , a jump in the crack speed is 
observed (Fig. 1). Typically for PMMA at room 
temperature the crack speed jumps from about 0.t  
to about 10 to 100msec  -1 depending on testing 
conditions. Associated with this jump is a signifi- 
cant change in the fracture surface morphology, 
which can be seen in Fig. 2. The crack propagation 
direction is from left to right: the slow crack 
propagation region appears rough and there is an 
abrupt transition to the smooth high speed region. 

Two mechanisms have been suggested to 
account for this crack speed behaviour. The first, 
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Figure 1 Crack speed v versus stress intensity factor K I in 
PMMA (schematic representation). 
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Figure 2 Fracture surface of PMMA M w = 8000000 
showing transition from stow to fast crack propagation. 
Specimen thickness shown corresponds to 4.16mm 
(crack propagation direction from left to right) 

by Williams [1,2]  explains the jump in crack 
speed as being due to a change-over from iso- 
thermal to adiabatic conditions at the tip of  a 
crack in a certain range of  crack speeds. Thus, the 
heat generated by the plastic deformation process 
at the crack tip builds up in the crack tip region, 
leading to a rise in temperature and a consequent 
softening of  the material and a reduction in its 
resistance to fracture. 

In the second mechanism, Johnson and Radon 
[3, 4] invoked the /3-relaxation in PMMA, which 
is attributed to the relaxation of  the ester side 
groups, to explain the transition in crack speed 
behaviour. Although no detailed mechanism was 
put forward coupling the relaxation to crack tip 
processes the theory was substantiated by the 
correlation between the temperature dependence 
of  a "time to failure" inferred from fracture 
experiments and the temperature variation of  the 
reciprocal frequency of  the 13-relaxation peak. 

Support for both these mechanisms is to be 
found in the literature. One of  the present authors 
[5],  for instance, used the model of  a moving 
cylindrical heat source o f  Weichert and Sch6nert 
[6] in the context of  an isothermal-adiabatic 
transition to calculate bounds to the crack speed 
immediately prior to the transition and found a 
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